METABOLIC PRODUCTS OF MICROORGANISMS. 246[†] 2880-II, A METABOLITE RELATED TO FERULIC ACID FROM *STREPTOMYCES GRISEOFLAVUS*

RALPH GROTE and AXEL ZEECK*

Institut für Organische Chemie, Universität Göttingen, Tammannstr. 2, D-3400 Göttingen, FRG

HANNELORE DRAUTZ and HANS ZÄHNER

Institut für Biologie II, Universität Tübingen, Auf der Morgenstelle 28, D-7400 Tübingen, FRG

(Received for publication February 20, 1988)

By chemical screening methods we detected in the mycelium of *Streptomyces griseoflavus* (strain Tü 2880) the colabomycin-complex²⁰ and a second compound, called 2880-II (Rf values see Table 1). 2880-II absorbed UV light on Silica gel F_{254} , and turned black with molybdatophosphoric acid and dark brown with vanillinsulfuric acid. It could be separated from the crude extracts by silica gel chromatography²⁰ and was further purified by repeated chromatography on Sephadex LH-20 (column 100×2.5

Table 1. Rf values (TLC, silica gel) of the colabomycin-complex and 2880-II.

Solvent system	Colabo- mycin- complex	1
CHCl ₃ - MeOH (9:1)	0.46	0.39
EtOAc - MeOH - $H_2O(6:2:1)$	0.67	0.60

cm) in CHCl₃ and CHCl₃ - MeOH (9:1) yielding 2880-II as a yellow amorphous powder (0.2 mg/ liter culture broth), which was soluble in DMF and DMSO, slightly soluble in CHCl₃ and insoluble in water or hexane.

Physico-chemical properties of 2880-II are as follows: MP 272°C; IR (KBr, Fig. 1) cm⁻¹ 3430, 3360, 3070, 2930, 1695, 1605 (s), 1550, 1520; UV $\lambda_{\max}^{\text{MeOH}}$ nm (ε) 322 (20,900), 250 (51,800); $\lambda_{\max}^{\text{MeOH}-\text{HC1}}$ 338 (28,500), 268 (30,500); $\lambda_{max}^{MeOH-NaOH}$ 364 (28,800), 252 (46,100); electron impact mass spectra (EI-MS) (70 eV) m/z (abundance) 289 (45%, M⁺, high resolution (HR) calcd for C₁₅H₁₅NO₅ and found: 289.0950), 177 (100%, calcd for $C_{10}H_9O_8$ and found: 177.0551), 145 $(26\%, \text{ calcd for } C_9H_5O_2$: 145.0289). The upfield part of the 1H NMR spectrum (200 MHz, DMF- d_7) revealed only two methylene groups at δ 2.53 (4'-H₂ and 5'-H₂) and a methoxy singlet at δ 3.90. In the aromatic region an AX-system (J=15.5 Hz) at δ 7.28 (8-H)/7.68 (7-H) and an AMX-system (J=8 and 2 Hz) at δ 6.94 (5-H)/ 7.20 (6-H)/ 7.32 (2-H) were observed, thus indicating the presence of a trisubstituted benzene and an isolated double bond with E-configuration. Downfield the signals of two OH protons at δ 9.88 (4-OH)/13.78 (chelated, 3'-OH) and one NH proton (δ 9.78) occurred (all exchangeable with MeOH- d_4).

The ¹³C NMR spectrum (50.3 MHz, DMF- d_7 , attached proton test: u; up for CH₃ or CH, d; down for CH₂ or C) showed eleven resonances: δ 55.9 (u, OCH₃), 111.5 (u, C-2), 115.8 (d, C-2'), 116.1/116.3 (u/u, C-5 and C-8), 123.2 (u, C-6), 126.9 (d, C-1), 143.7 (u, C-7), 148.8 (d, C-4), 150.3 (d, C-3), 167.4 (d, C-9)⁸). With regard to

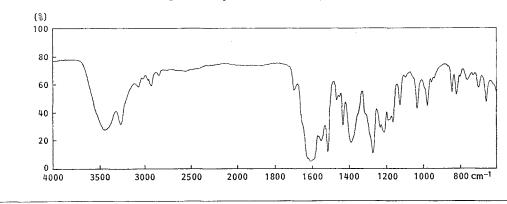
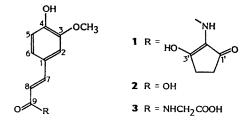



Fig. 1. IR spectrum of 2880-II (1) in KBr.

[†] See ref 1.

the molecular formula $C_{15}H_{15}NO_5$ four carbons were missing. This is typical for amide-bound 2-amino-3-hydroxycyclopent-2-enone as has been shown in the case of colabomycin A^{20} . Reference to this molety is given by the ¹³C NMR signal for C-2' at δ 115.8 and the ¹H NMR resonances of 3'-OH and 4'-H₂/5'-H₂.

To establish the correct substitution pattern of the trisubstituted benzene core, nuclear Overhauser enhancement (NOE) difference experiments were performed. Irradiation (DMF- d_{τ}) at δ 3.90 (OCH₃) resulted in an intensity enhancement at 2-H (11%) only, thus indicating the neighborhood of OCH₃ to 2-H. Irradiations (DMSO- d_6) at δ 9.78 (NH) or 9.60 (4-OH) revealed intensity enhancements on 8-H (11%) or 5-H (11%), proving the spacial closeness of 8-H to NH and of 5-H to 4-OH. Due to the small difference in chemical shifts between NH and 4-OH there were less intensive NOE effects of the neighboring system, respectively. All these findings are consistent with (E)-N-(3-hydroxy-1oxocyclopent-2-en-2-yl)-3-(4-hydroxy-3-methoxyphenyl)propenamide (=2880-II) represented by formula 1.

From the structural point of view 2880-II could be thought to be derived biosynthetically from ferulic acid (2), possibly as part of soybean meal4), and 2-amino-3-hydroxycyclopent-2enone, generated from succinate and glycine via 5-aminolevulinic acid⁵⁾. Thus the formation of 2880-II can be understood as directed biosynthesis using ingredients of soybean meal in the culture-medium. N-Feruloylglycine (3) was suspected to be a starter for the protein-biosynthesis in barley⁶⁾ and might also be a building block of soybean protein. In our case the biosynthesis of the C₅N moiety might start from this precursor and proceed by addition of succinate and subsequent cyclization using a typical pathway of secondary metabolism. On the

other hand ferulic acid could be linked to the already built C_5N moiety by a nonspecific amidase, as proposed for antibiotics of the manumycin group⁵⁾ *e.g.* colabomycin²⁾, which is produced by the same strain. In disc-diffusion assays against Gram-positive and Gram-negative bacteria, yeasts and fungi 2880-II showed no significant inhibitory activity up to 1 mg/ml. Ferulic acid is well known for its allelopathic interference with *e.g.* soybeans⁷⁾ if exposed to the roots.

Acknowledgment

This work was supported by the Friedrich-Naumann-Stiftung (RG) and the Fonds der Chemischen Industrie.

References

- GROTE, R.; A. ZEECK & J. M. BEALE, Jr.: Metabolic products of microorganisms. 245. Colabomycins, new antibiotics of the manumycin group from *Streptomyces griseoflavus*. II. Structure of colabomycin A. J. Antibiotics 41: 1186~1195, 1988
- 2) GROTE, R.; A. ZEECK, H. DRAUTZ & H. ZÄHNER: Metabolic products of microorganisms. 244. Colabomycins, new antibiotics of the manumycin group from *Streptomyces griseoflavus*. I. Isolation, characterization and biological properties. J. Antibiotics 41: 1178~1185, 1988
- NAKANO, K.; K. MURAKAMI, Y. TAKAISHI & T. TOMIMATSU: Feruloyl sucrose derivatives from *Heloniopsis orientalis*. Chem. Pharm. Bull. 34: 5005~5010, 1986
- ARAI, S.; H. SUZUKI, M. FUJIMAKI & Y. SAKU-RAI: Studies on the flavor components in soybean. Part II. Phenolic acids in defatted soybean flour. Agric. Biol. Chem. 30: 364~ 369, 1966
- 5) NAKAGAWA, A.; T.-S. WU, P. J. KELLER, J. P. LEE, S. ŌMURA & H. G. FLOSS: Biosynthesis of asukamycin. Formation of the 2-amino-3hydroxycyclopent-2-enone moiety. J. Chem. Soc. Chem. Commun. 1985: 519~521, 1985
- VAN SUMERE, C. F.; H. DE POOTER, H. ALI & M. DEGRAUW-VAN BUSSEL: N-Feruloylglycyl-L-phenylalanine: A sequence in barley proteins. Phytochemistry 12: 407~411, 1973
- EINHELLIG, F. A. & P. C. ECKRICH: Interactions of temperature and ferulic acid stress on grain sorghum and soybeans. J. Chem. Ecol. 10: 161~170, 1984